| 充电与启动
|充电
- 交流发电机AC纹波(无ECM控制)
- 交流发电机AC纹波(有ECM控制)
- 交流发电机电压和电流(12V系统)
- 交流发电机电压和电流(24V系统)
- 福特智能交流发电机
- 寄生/漏电电流
| 启动
- 相对压缩(汽油机)
- 相对压缩(柴油机)
| 传感器
|油门踏板
- 加速踏板位置传感器-模拟/模拟
- 加速踏板位置传感器-模拟/数字
| 空气流量计
- 空气流量计(叶片式)
- 空气流量计(热线式-汽油机)
- 空气流量计(数字式)
- 空气流量计(热线式-涡轮增压柴油机)
| 凸轮轴
- 凸轮轴传感器(交流励磁式)
- 凸轮轴传感器(霍尔效应式)
- 凸轮轴传感器(感应式)
| 曲轴
- 感应式曲轴位置传感器-起动中 (浮地)
- 感应式曲轴位置传感器-运行中 (浮地)
- 感应式曲轴位置传感器-起动中 (非浮地)
- 感应式曲轴位置传感器-运行中 (非浮地)
- 霍尔效应曲轴传感器-运行中
| 冷却液温度计
- 发动机冷却液温度传感器(5V参考电压)
| 分电器拾取
- 分电器拾取器(霍尔效应)
- 分电器拾取器(感应式)
| 燃油压力
- 燃油压力传感器-共轨柴油
| 无钥匙进入
- 无钥匙进入
| 爆震
- 爆震传感器
| 进气歧管压力传感器
- 模拟式-汽油
- 模拟式-增压柴油
- 数字式-汽油
- 数字式-汽油
| 氧气传感器
- 宽带,博世LSU 4.2
- 二氧化钛
- 氧化锆
- 加热器(氧化锆)和信号电路
- 触媒催化器前后氧气传感器(氧化锆)
| 倒车雷达
- 倒车雷达
| 车速传感器
- 车速传感器(霍尔效应)
| 节气门位置
- 节气门位置电位计
- 节气门位置开关
| ABS
- 霍尔效应式
- 感应式
- 磁阻式
| 执行器
|碳罐电磁阀
- 碳罐电磁阀(电压)
| 废气再循环电磁阀
- 废气再循环电磁阀(电压)
| 燃油泵
- 燃油泵(电流)
| 柴油机预热塞
- 柴油机预热塞(电流)
- 柴油机预热塞(电流与电压)
| 怠速控制阀(IAC)
- 怠速控制阀(电磁式)
- 怠速控制阀(旋转螺线管)
- 步进马达
| 喷油嘴(汽油机)
- 汽油直喷-(喷嘴电流)
- 汽油直喷-(喷嘴电压)
- 汽油直喷-(喷嘴电压和电流)
- 多点喷射-(喷油嘴电流)
- 多点喷射-(喷油嘴电压)
- 多点喷射-(喷油嘴电压 vs 电流)
- 单点喷射-(喷油嘴电流)
- 单点喷射-(喷油嘴电压)
| 喷油嘴(柴油机)
- 共轨柴油(博世) – 压电式喷油嘴电流
- 共轨柴油(博世) – 电磁阀式喷油嘴电流
- 共轨柴油(德尔福) – 电磁阀式喷油嘴电流
- 压电式喷油嘴 – VAG PD 单体泵 (电流)
- 压电式喷油嘴 – VAG PD 单体泵 (电压、电流和接地)
| 压力调节阀
- 共轨柴油(博世) – 压力调节阀
| 流量控制阀
- 共轨柴油(博世) – 流量控制阀
| 油门伺服马达
- 油门伺服马达
| 可变速冷却风扇
- 可变速冷却风扇
| 可变气门正时
- 可变凸轮轴正时-单控电磁阀电压
- VVT执行器-可变气门正时
| 点火系统
|独立点火系统(COP)
- 两线-COP
- 初级电压和电流(2 线)
- 初级电压和电流(3 线)
- 初级电压 vs 次级电压
- 初级电压 vs 次级电压和电流
- 使用COP探头测次级电压 ( mV 量程)
- 触发和反馈(4 线)
- 次级点火电压(使用点火延长线)和放大器数字开关信号
| 多COP单元
- 初级绕组驱动信号(双驱动)
- 初级绕组驱动信号(双驱动) &电流
- 初级绕组驱动电压信号 vs 电流 vs 次级电压
- 初级绕组驱动电压信号 vs 次级电压
- 次级点火电压(四个气缸)
- 正极点火– 次级电压
- 负极点火– 次级电压
| 分电器
- 初级电流
- 初级电压(使用 10:1 衰减器)
- 初级电压和电流
- 初级点火 vs 次级点火
- 中央高压线次级电压 vs 分缸高压线次级电压
- 中央高压线次级电压
- 分缸高压线次级电压
| 无分电器系统(DIS)/无效火花
- 初级电流
- 初级电压 (使用 10:1 衰减器)
- 初级绕组驱动信号(双驱动) & 电流
- 初级电压 vs 初级电流
- 初级电压 vs 次级电压
- 负极点火 – 次级电压
- 正极点火– 次级电压
- 次级电压 vs 初级电压 vs 初级电流
- 放大器接地
| 通信网络
| CAN总线
- CAN 总线物理层
- CAN 总线串行译码
| FlexRay 总线
- FlexRay总线物理层
| K-line 总线
- K-Line
| LIN 总线
- LIN总线 – 发动机熄火时测试
| 系统测试
| HVAC 系统效率
- HVAC 效率
| 线缆摇摆测试
- 线缆摇摆测试
| 凸轮轴位置与曲轴位置
- 曲轴位置传感器 vs 凸轮轴位置传感器
| 点火初级电压与曲轴位置
- 分电器点火系统初级电压 vs 曲轴位置传感器
| 点火初级电压与喷油嘴电流
- 分电器点火系统初级电压 vs 多点喷油嘴电流
| 压力传感器
| WPS500压力传感器
- 共轨柴油喷嘴回油压力测试
- 曲轴箱压力测试 (起动中)
- 曲轴箱压力测试 (运行中)
- 排气脉冲测试 (起动中)
- 排气脉冲测试 (运行中)
- 燃油负压 – 柴油机
- 进气歧管压力 – 起动中(汽油机)
- 进气歧管压力 – 怠速运行中(汽油机)
- 进气歧管压力 – 节气门迅速全开(汽油机)
- 气缸内压力测试 (起动中)
- 气缸内压力测试 (运行中)
- 气缸内压力测试 (节气门迅速全开)
- 涡轮增压器性能测试 (汽油机)
加速踏板位置传感器-模拟/数字
这个测试的目的是评估加速踏板在不同位置时加速踏板位置传感器(APP)传感器的输出电压波形。
如何进行测试
●根据汽车制造商提供的资料查找出加速踏板位置传感器的两条信号线,加速器踏板位置传感器是电位计型传感器,通常有两条接地线和两条信号线。
●连接一条BNC测试线到示波器A通道,连接一个后背刺针到测试线彩色接头(正极)上。再用刺针背刺加速踏板传感器插头里的其中一条电位计连接线,测试线黑色接头连接到蓄电池负极搭铁。
●连接一条BNC测试线到示波器B通道,连接一个后背刺针到测试线彩色接头(正极)上。再用刺针背刺加速踏板传感器插头里的另一条电位计连接线,测试线黑色接头连接到蓄电池负极搭铁。
●也可以断开多插头连接器,使用6-路通用引线连接多插头连接器分开的两半,再将测试线连接到引线上。
●最小化此帮助页面,您会看到PicoScope软件界面加载了一个示例波形,而且预设好了软件以便您采集波形。
●打开点火开关,不起动发动机。
●点击“开始”,开始观察实时读数。
●踩下油门踏板。
●采集到波形后,“停止”示波器运行。
●关闭点火开关。
●使用波形缓冲区、放大以及测量等工具来观察和分析波形。

示例波形


不踩加速踏板

加速踏板踩下一半

加速踏板踩到底
波形注意点
该模拟/数字APP传感器产生一个模拟电压(A通道,蓝色波形和一个数字输出(B通道,红色波形)。模拟电压与踏板位置成比例关系,跟前面的波形一样。数字电压是一系列约12伏的可变宽度脉冲。每个脉冲的宽度与当时的模拟电压成比例关系,如示例波形所示。
示例波形

波形注意点
在这个例子里,加速器踏板位置(APP)传感器是电位计型传感器。它接收两个来自动力控制模块(PCM)的参考电压,有两条接地线和两条信号线(信号线发送与加速踏板位置相关的变化电压给PCM)。这发送回PCM的信号电压,不同的汽车会有所不同,但绝不会高于5伏。
波形库
在波形库添加通道的下拉菜单中选择Accelerator pedal position sensor (digital)。

更多信息
随着电子控制水平的提高和运动的机械部件慢慢减少,不可避免地我们看到越来越多的部件由电子控制。
油门控制就是其中一个例子。大多数现代生产的汽车不再使用油门拉线,取而代之地使用加速踏板位置传感器(APP)结合电子油门控制执行器(ETC) .电子油门马达和节气门位置传感器(TPS)。
加速踏板位置传感器(APP)是附加在加速踏板上的很简单的一个电位计、或更常见的两个电位计。当加速踏板(油门)被按下,一个电压信号就会被传送到动力控制模块(PCM),反映加速踏板的实际位置也即是驾驶员的物理指令。这个输入产生的结果是,PCM产生一个输出发送给相关的执行器(电子油门控制执行器(ETC) )。如前面所提及,APP通常有两个电位计。安装它们是用来作合理性测试的,也用于确保─定程度的失效保护操作。
有几种产生信号的方法。大多数使用常见的5伏参考电压,因为整个发动机管理系统都使用它。下面是两种最普遍的产生信号的方法:
图2:电位计1产生一个0.3至4.8伏的信号(图2里的红色波形),电位计2产生一个0.5至4.8伏的信号(图2里的蓝色波形)。例如,当加速踏板在45度位置时,电位计1可能输出2伏的信号,电位计2产生3伏的信号。
图3∶电位计1产生一个0.3至4.8伏的信号(图3里的红色波形),电位计2产生一个4.8至0.3伏的信号(图3里的蓝色波形)。当加速踏板在0度位置时,电位计1可能输出0.5伏的信号,电位计2可能输出4.5伏的信号。
通过以这种方式接收信号,PCM可以确保信息正确;例如,如果APP角度为45度时,电位计1输出2伏和电位计2输出3伏。如果与此有任何的偏差,PCM就会检测到可能的故障并记录相应的故障代码。如果一个电位计出现故障,同样PCM会检测到,并以失效保护或紧急模式运行,通常是提高怠速和限制节气门操作,并亮起故障指示灯(MIL)。使用两个电位计也可让PCM监测加速踏板被按下和关闭的速度,节气门位置从而相应地控制燃油供给。
如果怀疑信号有故障,检测从PCM到APP的导线。
确保PCM有良好的电源供应和接地,这是必需的。
用欧姆表检测APP(断开状态)。
针脚数据示例
检测自Smart Forfour 1.1汽油2005 MY。
海拉(Hella)部件
6针脚连接器
针脚1= 2.5V参考电压(黄色/红色)
针脚2=5.0V参考电压(黄色/绿色)
针脚3=信号电压,大约1 V(节气门关闭)&3.8V(节气门开启)(灰色)
针脚4=0V接地线(褐色/白色)
针脚5=0V接地线(褐色)
针脚6=信号电压,大约0.5V (节气门关闭)&1.8 V(节气门开启)(粉红色/黑色)
以上引用的图片都只是象意,并在点火开关开启和插头连接的情况下通过背刺的方法检测。

加速踏板和位置传感器示意图

图 2

图 3
免责声明
此帮助主题如有更改,不另行通知。所包含的信息经过仔细检查并认为是正确的。此信息是我们研究和检测的一个例子,并不是固定的程序。对于不正确之处,Pico Technology不负任何责任。每个车辆都会不一样,且要求唯一的测试设置。