| 充电与启动
|充电
- 交流发电机AC纹波(无ECM控制)
- 交流发电机AC纹波(有ECM控制)
- 交流发电机电压和电流(12V系统)
- 交流发电机电压和电流(24V系统)
- 福特智能交流发电机
- 寄生/漏电电流
| 启动
- 相对压缩(汽油机)
- 相对压缩(柴油机)
| 传感器
|油门踏板
- 加速踏板位置传感器-模拟/模拟
- 加速踏板位置传感器-模拟/数字
| 空气流量计
- 空气流量计(叶片式)
- 空气流量计(热线式-汽油机)
- 空气流量计(数字式)
- 空气流量计(热线式-涡轮增压柴油机)
| 凸轮轴
- 凸轮轴传感器(交流励磁式)
- 凸轮轴传感器(霍尔效应式)
- 凸轮轴传感器(感应式)
| 曲轴
- 感应式曲轴位置传感器-起动中 (浮地)
- 感应式曲轴位置传感器-运行中 (浮地)
- 感应式曲轴位置传感器-起动中 (非浮地)
- 感应式曲轴位置传感器-运行中 (非浮地)
- 霍尔效应曲轴传感器-运行中
| 冷却液温度计
- 发动机冷却液温度传感器(5V参考电压)
| 分电器拾取
- 分电器拾取器(霍尔效应)
- 分电器拾取器(感应式)
| 燃油压力
- 燃油压力传感器-共轨柴油
| 无钥匙进入
- 无钥匙进入
| 爆震
- 爆震传感器
| 进气歧管压力传感器
- 模拟式-汽油
- 模拟式-增压柴油
- 数字式-汽油
- 数字式-汽油
| 氧气传感器
- 宽带,博世LSU 4.2
- 二氧化钛
- 氧化锆
- 加热器(氧化锆)和信号电路
- 触媒催化器前后氧气传感器(氧化锆)
| 倒车雷达
- 倒车雷达
| 车速传感器
- 车速传感器(霍尔效应)
| 节气门位置
- 节气门位置电位计
- 节气门位置开关
| ABS
- 霍尔效应式
- 感应式
- 磁阻式
| 执行器
|碳罐电磁阀
- 碳罐电磁阀(电压)
| 废气再循环电磁阀
- 废气再循环电磁阀(电压)
| 燃油泵
- 燃油泵(电流)
| 柴油机预热塞
- 柴油机预热塞(电流)
- 柴油机预热塞(电流与电压)
| 怠速控制阀(IAC)
- 怠速控制阀(电磁式)
- 怠速控制阀(旋转螺线管)
- 步进马达
| 喷油嘴(汽油机)
- 汽油直喷-(喷嘴电流)
- 汽油直喷-(喷嘴电压)
- 汽油直喷-(喷嘴电压和电流)
- 多点喷射-(喷油嘴电流)
- 多点喷射-(喷油嘴电压)
- 多点喷射-(喷油嘴电压 vs 电流)
- 单点喷射-(喷油嘴电流)
- 单点喷射-(喷油嘴电压)
| 喷油嘴(柴油机)
- 共轨柴油(博世) – 压电式喷油嘴电流
- 共轨柴油(博世) – 电磁阀式喷油嘴电流
- 共轨柴油(德尔福) – 电磁阀式喷油嘴电流
- 压电式喷油嘴 – VAG PD 单体泵 (电流)
- 压电式喷油嘴 – VAG PD 单体泵 (电压、电流和接地)
| 压力调节阀
- 共轨柴油(博世) – 压力调节阀
| 流量控制阀
- 共轨柴油(博世) – 流量控制阀
| 油门伺服马达
- 油门伺服马达
| 可变速冷却风扇
- 可变速冷却风扇
| 可变气门正时
- 可变凸轮轴正时-单控电磁阀电压
- VVT执行器-可变气门正时
| 点火系统
|独立点火系统(COP)
- 两线-COP
- 初级电压和电流(2 线)
- 初级电压和电流(3 线)
- 初级电压 vs 次级电压
- 初级电压 vs 次级电压和电流
- 使用COP探头测次级电压 ( mV 量程)
- 触发和反馈(4 线)
- 次级点火电压(使用点火延长线)和放大器数字开关信号
| 多COP单元
- 初级绕组驱动信号(双驱动)
- 初级绕组驱动信号(双驱动) &电流
- 初级绕组驱动电压信号 vs 电流 vs 次级电压
- 初级绕组驱动电压信号 vs 次级电压
- 次级点火电压(四个气缸)
- 正极点火– 次级电压
- 负极点火– 次级电压
| 分电器
- 初级电流
- 初级电压(使用 10:1 衰减器)
- 初级电压和电流
- 初级点火 vs 次级点火
- 中央高压线次级电压 vs 分缸高压线次级电压
- 中央高压线次级电压
- 分缸高压线次级电压
| 无分电器系统(DIS)/无效火花
- 初级电流
- 初级电压 (使用 10:1 衰减器)
- 初级绕组驱动信号(双驱动) & 电流
- 初级电压 vs 初级电流
- 初级电压 vs 次级电压
- 负极点火 – 次级电压
- 正极点火– 次级电压
- 次级电压 vs 初级电压 vs 初级电流
- 放大器接地
| 通信网络
| CAN总线
- CAN 总线物理层
- CAN 总线串行译码
| FlexRay 总线
- FlexRay总线物理层
| K-line 总线
- K-Line
| LIN 总线
- LIN总线 – 发动机熄火时测试
| 系统测试
| HVAC 系统效率
- HVAC 效率
| 线缆摇摆测试
- 线缆摇摆测试
| 凸轮轴位置与曲轴位置
- 曲轴位置传感器 vs 凸轮轴位置传感器
| 点火初级电压与曲轴位置
- 分电器点火系统初级电压 vs 曲轴位置传感器
| 点火初级电压与喷油嘴电流
- 分电器点火系统初级电压 vs 多点喷油嘴电流
| 压力传感器
| WPS500压力传感器
- 共轨柴油喷嘴回油压力测试
- 曲轴箱压力测试 (起动中)
- 曲轴箱压力测试 (运行中)
- 排气脉冲测试 (起动中)
- 排气脉冲测试 (运行中)
- 燃油负压 – 柴油机
- 进气歧管压力 – 起动中(汽油机)
- 进气歧管压力 – 怠速运行中(汽油机)
- 进气歧管压力 – 节气门迅速全开(汽油机)
- 气缸内压力测试 (起动中)
- 气缸内压力测试 (运行中)
- 气缸内压力测试 (节气门迅速全开)
- 涡轮增压器性能测试 (汽油机)
独立点火 – 使用COP探头测次级电压 ( mV 量程)
这个测试的目的是使用COP探头采集次级点火电压波形来评估独立点火线圈的工作状况。
波形采集方法
测试注意点
这种方法用来测试那种屏蔽非常好的,且不能用软件里标准COP次级预设菜单进行测试的COP单元。它使用示波器敏感的毫伏(mV)量程来拾取次级波形。使用这种方法,您将会失去千伏(kV)参照值,但你仍可以比较所有COP单元以识别问题。
将探头的末端放在线圈上时,确保你使用的是它的平面。尽量让探头在线圈上的放置位置保持一致:在第一个线圈上找到测试信号最好的位置,然后在其它线圈上重复这个位置。
发动机运转时,与下面示例波形相似的点火波形会出现在屏幕上。
如果你仍看不到清晰的波形,请进一步减小电压量程到50 mV或增加量程到200 mV,如示例波形所示。

示例波形

波形注意点
示例波形显示的是电子点火发动机的典型波形。该波形采集于COP单元。
次级波形显示击穿火花塞间隙所需的初始尖峰电压之后,高压流过火花塞电极的时间长度。这时间被称为“燃烧时间”或者“火花持续时间”。在示例波形里,示波器屏幕中央显示的水平电压线是相当恒定的电压,但是它后面突然下降到被称为“线圈振荡”阶段。“燃烧时间”也显示在 图 3 里。

图3 燃烧时间

图4 线圈振荡
线圈振荡阶段(如图 4 所示)应当显示最少4个尖峰(包括波峰和波谷)。损失尖峰意味着要更换线圈。线圈振荡与下一个“下降”之间的时间,线圈处于空闲状态,此时线圈次级电路没有电压。这个“下降”被称为“负极性峰值”(如图 5 所示) ,并产生一个与火花塞击穿电压相反方向的小振荡。这是由于线圈的初级电流刚开启。线圈里的电压只有在正确的点火时刻才被释放,然后高压火花点燃空气/燃油混合物。

图5 负极性峰值

图6 火花塞 kV
火花塞击穿电压是击穿火花塞电极间隙所需的电压,通常被称为“火花塞kV”。这显示在图 7 里。在示例波形里,火花塞kV显示为mV,因此不能知道kV值,见图 6,但是可以跟其它线圈作对比。
更多信息
在这里添加更多信息
独立点火线圈的工作跟其它点火系统的线圈一样重要。每个线圈的初级阻抗都很小,并将初级系统的电压增加到40,000伏使火花塞产生火花。
COP独立点火与其他点火系统的唯一区别是每个COP线圈都直接被安装在火花塞上,所以电压直接到达火花塞电极,而不需要经过分电器或火花塞线。这种直接连接的方法传递尽可能强的火花能量,并提高了点火系统的耐用性。
每个火花塞使用各自独立的线圈,意味着线圈在两次点火之间的时间更多。增加“线圈通电”时间(给线圈供应电压建立磁场的时间),从而增加发动机高转速(此时往往易发生失火)时的线圈输出电压。

COP单元示意图
免责声明
此帮助主题如有更改,不另行通知。所包含的信息经过仔细检查并认为是正确的。此信息是我们研究和检测的一个例子,并不是固定的程序。对于不正确之处,Pico Technology不负任何责任。每个车辆都会不一样,且要求唯一的测试设置。